[1]
P. Manoonpong, T. Geng, T. Kulvicius, B. Porr, and F. Wörgötter, ‘Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning’, PLoS Computational Biology, vol. 3, no. 7, 2007, doi: 10.1371/journal.pcbi.0030134.
[3]
B. Abernethy, ‘Theme 2: Concept 2’, in Biophysical foundations of human movement, 3rd ed., Champaign, IL: Human Kinetics, 2013, pp. 219–239.
[4]
E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of neural science, 3rd ed. New York: Elsevier, 1991, pp. 537–543.
[5]
‘The Descending Tracts - TeachMeAnatomy’. [Online]. Available: http://teachmeanatomy.info/neuro/pathways/descending-tracts-motor/
[6]
M. L. Latash, Neurophysiological basis of movement. Champaign, IL: Human Kinetics, 1998, pp. 43–51.
[7]
J. C. Rothwell, Control of human voluntary movement, 2nd ed. London: Chapman & Hall, 1994, pp. 329–339 [Online]. Available: https://link.springer.com:9443/book/10.1007/978-94-011-6960-8
[8]
R. Carson, S. Riek, and W. Byblow, ‘Bilateral interactions between the upper limbs’, Physiology News, vol. 58, pp. 37–38, 2005 [Online]. Available: https://www.physoc.org/magazine-articles/bilateral-interactions-between-the-upper-limbs/
[9]
‘Chapter 8: Reflex evaluation’. [Online]. Available: https://www.dartmouth.edu/~dons/part_1/chapter_8.html
[10]
R. A. Schmidt and T. D. Lee, Motor control and learning: a behavioral emphasis, 5th ed. Champaign, IL: Human Kinetics, 2011, pp. 154–156.
[11]
J. C. Rothwell, Control of human voluntary movement, 2nd ed. London: Chapman & Hall, 1994, pp. 120–123 [Online]. Available: https://link.springer.com/book/10.1007/978-1-4684-7688-0
[12]
M. L. Latash, Neurophysiological basis of movement. Champaign, IL: Human Kinetics, 1998, pp. 55–61.
[13]
M. P. Schwellnus, E. W. Derman, and T. D. Noakes, ‘Aetiology of skeletal muscle “cramps” during exercise: A novel hypothesis’, Journal of Sports Sciences, vol. 15, no. 3, pp. 277–285, Jan. 1997, doi: 10.1080/026404197367281. [Online]. Available: https://doi.org/10.1080/026404197367281
[14]
J. C. Rothwell, Control of human voluntary movement, 2nd ed. London: Chapman & Hall, 1994, pp. 187–194 [Online]. Available: https://link.springer.com:9443/book/10.1007/978-94-011-6960-8
[15]
J. C. Rothwell, Control of human voluntary movement, 2nd ed. London: Chapman & Hall, 1994, pp. 263–280 [Online]. Available: https://link.springer.com/book/10.1007/978-1-4684-7688-0
[16]
J. C. Rothwell, Control of human voluntary movement, 2nd ed. London: Chapman & Hall, 1994, pp. 286–292 [Online]. Available: https://link.springer.com:9443/book/10.1007/978-94-011-6960-8
[17]
K. Mills, ‘Impairment of skilled manipulation in patients with lesions of the motor system’, in Neural Control of Skilled Human Movement, London: Portland Press, 1995, pp. 75–83.
[18]
R. G. Lee and W. G. Tatton, ‘Motor responses to sudden limb displacements in primates with specific CNS lesions and in human patients with motor system disorders’, 1975 [Online]. Available: http://journals.cambridge.org.ezproxy.auckland.ac.nz/action/displayAbstract?fromPage=online&aid=9448243&fulltextType=RA&fileId=S0317167100020382
[19]
J. Noth, M. Schwarz, K. Podoll, and F. Motamedi, ‘Evidence that low-threshold muscle afferents evoke long-latency stretch reflexes in human hand muscles’, 1991 [Online]. Available: http://jn.physiology.org.ezproxy.auckland.ac.nz/content/65/5/1089
[20]
P. B. Matthews, S. F. Farmer, and D. A. Ingram, ‘On the localization of the stretch reflex of intrinsic hand muscles in a patient with mirror movements.’, The Journal of Physiology, vol. 428, no. 1, pp. 561–577, Sep. 1990, doi: 10.1113/jphysiol.1990.sp018228.
[21]
M. E. Morris, R. Iansek, J. J. Summers, and T. A. Matyas, ‘Chapter 4 Motor control considerations for the rehabilitation of gait in Parkinson’s disease’, in Motor control and sensory motor integration: issues and directions, vol. Advances in psychology, Amsterdam: Elsevier, 1995, pp. 61–93 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0166411506800075
[22]
Gwyn N. Lewis, ‘Stride length regulation in Parkinson’s disease: the use of extrinsic, visual cues’, Brain, vol. 123, no. 10, pp. 2077–2090, 2000 [Online]. Available: https://academic.oup.com/brain/article/123/10/2077/352238
[23]
S. M. Schabrun, C. M. Stinear, W. D. Byblow, and M. C. Ridding, ‘Normalizing Motor Cortex Representations in Focal Hand Dystonia’, Cerebral Cortex, vol. 19, no. 9, pp. 1968–1977, Sep. 2009, doi: 10.1093/cercor/bhn224.
[24]
C. M. Stinear, ‘Impaired Modulation of Intracortical Inhibition in Focal Hand Dystonia’, Cerebral Cortex, vol. 14, no. 5, pp. 555–561, Mar. 2004, doi: 10.1093/cercor/bhh017.
[25]
Cathy M. Stinear, ‘Priming the motor system enhances the effects of upper limb therapy in chronic stroke’, Brain, vol. 131, no. 5, pp. 1381–1390, 2008 [Online]. Available: https://brain-oxfordjournals.org/content/131/5/1381
[26]
Cathy M. Stinear, ‘The PREP algorithm predicts potential for upper limb recovery after stroke’, Brain, vol. 135, no. 8, pp. 2527–2535, 2012 [Online]. Available: https://brain-oxfordjournals.org/content/135/8/2527
[27]
J. C. Rothwell, Control of human voluntary movement, 2nd ed. London: Chapman & Hall, 1994, pp. 24–29 [Online]. Available: https://link.springer.com:9443/book/10.1007/978-94-011-6960-8
[28]
M. S. A. Graziano, ‘Mapping From Motor Cortex to Biceps and Triceps Altered By Elbow Angle’, Journal of Neurophysiology, vol. 92, no. 1, pp. 395–407, Mar. 2004, doi: 10.1152/jn.01241.2003.
[29]
R. Schmidt and T. Lee, ‘Motor Programs: Motor control of brief actions’, in Motor learning and performance: from principles to application, Fifth edition., Champaign, IL: Human Kinetics, 2014, pp. 107–121.
[30]
J. A. S. Kelso, ‘Chapter 2: Self-Organisation of Behaviour: The Basic Picture’, in Dynamic patterns: the self-organization of brain and behavior, Cambridge, Mass: MIT Press, 1995, pp. 29–67 [Online]. Available: https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=49465&site=ehost-live&scope=site&ebv=EB&ppid=pp_29
[31]
L. V. Bradnam, C. M. Stinear, P. A. Barber, and W. D. Byblow, ‘Contralesional Hemisphere Control of the Proximal Paretic Upper Limb following Stroke’, Cerebral Cortex, vol. 22, no. 11, pp. 2662–2671, Nov. 2012, doi: 10.1093/cercor/bhr344.
[32]
M. L. Latash, Neurophysiological basis of movement. Champaign, IL: Human Kinetics, 1998, pp. 172–178.
[33]
W. D. Byblow, R. G. Carson, and D. Goodman, ‘Expressions of asymmetries and anchoring in bimanual coordination’, Human Movement Science, vol. 13, no. 1, pp. 3–28, Feb. 1994, doi: 10.1016/0167-9457(94)90027-2. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0167945794900272?via%3Dihub
[34]
Byblow, W. D., Lewis, G. N., Stinear, J. W., Austin, N. J., and Lynch, M., ‘The subdominant hand increases in the efficacy of voluntary alterations in bimanual coordination’, Experimental Brain Research, vol. 131, 2000 [Online]. Available: https://link.springer.com/article/10.1007/s002219900271
[35]
J. P. Coxon, C. M. Stinear, and W. D. Byblow, ‘Selective Inhibition of Movement’, Journal of Neurophysiology, vol. 97, no. 3, pp. 2480–2489, Jan. 2007, doi: 10.1152/jn.01284.2006. [Online]. Available: https://journals.physiology.org/doi/full/10.1152/jn.01284.2006
[36]
R. A. Magill, ‘Vision and catching’, in Motor learning: concepts and applications, Fourth edition., Madison, Wis: Brown & Benchmark, 1993, pp. 119–122.
[37]
R. A. Schmidt, Motor control and learning: a behavioral emphasis. Champaign, Ill: Human Kinetics Publishers, 1982, pp. 335–343.
[38]
R. A. Schmidt and C. A. Wrisberg, Motor learning and performance, 2nd ed. Champaign, IL: Human Kinetics, 2000, pp. 186–188.
[39]
R. J. Nudo, ‘Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys’, Journal of Neurophysiology, vol. 75, no. 5, pp. 2144–2149, May 1996 [Online]. Available: http://jn.physiology.org/content/jn/75/5/2144.full.pdf
[40]
S. B. Frost, ‘Reorganization of Remote Cortical Regions After Ischemic Brain Injury: A Potential Substrate for Stroke Recovery’, Journal of Neurophysiology, vol. 89, no. 6, pp. 3205–3214, Feb. 2003, doi: 10.1152/jn.01143.2002.
[41]
N. Dancause et al., ‘Effects of Small Ischemic Lesions in the Primary Motor Cortex on Neurophysiological Organization in Ventral Premotor Cortex’, Journal of Neurophysiology, vol. 96, no. 6, pp. 3506–3511, Aug. 2006, doi: 10.1152/jn.00792.2006. [Online]. Available: https://journals.physiology.org/doi/full/10.1152/jn.00792.2006